Wayne Peng
joint with J. Bell, K. Huang, T. Tucker, and S.-F. Tsai
Workshop on Dynamical System
Any finitely generated linear group (group generated by invertible square matrices) contains either a solvable subgroup of finite index or a non-commutative free subgroup.
Can we divide a unit sphere into a finite number of pieces and then reconstruct these pieces, using only translations, into two identical spheres?
⟨a, b⟩={1}∪W(a)∪W(b)∪W(a−1)∪W(b−1)
Moreover, we have ⟨a, b⟩=aW(a−1)∪W(a)=bW(b−1)∪W(b).
A locally compact Hausdorff (topological) group is amenable if it admits a left- (or right-)invariant mean (some measure).
No amenable group contains a free group of rank 2.
A group is either amenable or it contains a free group of rank 2.
Let G be a group acting on a set X. Let A and B be disjoint subsets of X. For f,g∈G, assume fn:A→B and gn:B→A for any n∈Z∖{0}. Then, ⟨f,g⟩ is a free group of rank 2.
sketch of the proof: Note that f∗g∗⋯f∗:A→B cannot be an identity.
Thus, ⟨[1201],[1021]⟩ is a free group of rank 2.
Consider a set of characters Σ={f,g}, and define language Σ∗ as the collection of (finite and infinite) words composed using characters from Σ. Let Σ∗n denote the set of words from Σ of the length n, and let Σ∗∞ be the set of infinite words from Σ.
Our main result indicates that semigroups generated by rational functions adheres to the Tits alternative.
To comprehend the essence of our proof for the main result, perform the following steps:
Write a nonzero rational number ab in lowest terms. The naive height is h(α)=log(max e.g. h(\frac{1}{2})=\log(2) and h(\frac{1001}{2000})=\log(2000).
Let f be a rational function. Let d be the degree of f. Then, we have a constant C, dependent only on f, such that |h(f(\alpha))-dh(\alpha)| < C
h_f(\alpha)=\lim_{n\to\infty}\frac{h(f^n(\alpha))}{d^n}
Key argument: For m>n, \left|\frac{h(f^m(\alpha))}{d^m} - \frac{h(f^n(\alpha))}{d^n}\right|
\begin{align*}
&= \left|\frac{h(f^m(\alpha))}{d^m} - \frac{h(f^{m-1}(\alpha))}{d^{m-1}}+\frac{h(f^{m-1}(\alpha))}{d^{m-1}} - \frac{h(f^{m-2}(\alpha))}{d^{m-2}} + \cdots + \frac{h(f^{n+1}(\alpha))}{d^{n+1}} - \frac{h(f^n(\alpha))}{d^n}\right|\\\\
&\leq \left|\frac{h(f^m(\alpha))}{d^m} - \frac{h(f^{m-1}(\alpha))}{d^{m-1}} \right| + \left|\frac{h(f^{m-1}(\alpha))}{d^{m-1}} - \frac{h(f^{m-2}(\alpha))}{d^{m-2}}\right| + \cdots + \left|\frac{h(f^{n+1}(\alpha))}{d^{n+1}} - \frac{h(f^n(\alpha))}{d^n}\right|\\\\
&< \frac{C}{d^{m}} + \frac{C}{d^{m-1}} + \cdots + \frac{C}{d^{n+1}} = \frac{\frac{C}{d^{m+1}}-\frac{C}{d^{n+1}}}{\frac{1}{d}-1}
\end{align*}
Consider a sequence \{f_1(\alpha),\ f_2f_1(\alpha),\ f_3f_2f_1(\alpha),\ \cdots \} where f_i is equal to f or g. Let w_n= f_n\ldots f_2f_1, and let w be the formal composition \ldots f_3f_2f_1 (w\in\Sigma^*_\infty). We define h_w(\alpha) = \lim_{n\to\infty}\frac{h(w_n(\alpha))}{\deg(w_n)}.
Given \alpha\in\mathbb{Q}\setminus\text{Perp}(f)\cap\text{Prep}(g), we define X=\{h_w(\alpha)| w\in\Sigma^*_\infty\}.
And, we define fX = \{h_{wf}(\alpha)| w\in\Sigma^*_\infty\}.
Note that f^nX\subset B\left(\frac{h(f^n(\alpha))}{d^n}, \frac{C}{(\deg(f)-1)\deg(f)^n}\right).
Suppose h_f(\alpha)\neq h_g(\alpha). Then, there exists an integer n such that f^nX\cap g^nX=\varnothing. Let A = f^nX\text{ and }B=g^nX.
Obviously, f^{nk}:B\to A and g^{nk}:A\to B for any positive integer k.
Thus, by the ping-pong lemma, we can conclude that \langle f^n, g^n\rangle is a free semigroup of rank 2.
The existence of any relation between generators results in a reduction in the count of distinct words within \Sigma^*_n, leading to the inequality \#\Sigma^*_n\leq (\#\Sigma)^n.
Let \Sigma=\{f_1,\ f_2,\ \ldots,\ f_m\}, and assume f_if_j=f_jf_i for all i and j.
We say the growth rate of the semigroup \langle f,g\rangle is f(n) if \#\Sigma^*_n=O(f(n)). A polynomially bounded growth corresponds to f(n) being a polynomial, while an exponentially growth corresponds to f(n) being an exponential function.
Let \mathcal{S}\subset\mathbb{C}(x) be a finitely generated semigroup of endomorphisms of \mathbb{P}^1. Then either \mathcal{S} has polynomially bounded growth or contains a nonabelian free semigroup (exponential growth).
Let f,g\in\mathcal{C}(x) be two endormophisms of \mathbb{P}^1_{\mathbb{C}}, each having degree greater than 1. Then the followings are equivalent:
Do the rational functions f and g (assuming they share the same degree) have any nontrivial relationship? h_f(\alpha)\neq h_g(\alpha)\Rightarrow \langle f^j, g^j\rangle\text{ is a free group of rank }2\text{ for some $j$}
j=1?
Input: polarized morphisms f and g, and an integer n
Output: A Boolean indicating whether f and g have a composition relation, or "indeterminable" if the algorithm cannot determine by searching on a binary tree up to level n.
Therefore, to verify a nontrivial composition relation, we can simply assume that the rightmost functions are distinct.
Q = random() check_list = [(f,g)] while check_list != []: a_pair = check_list.pop(0) check_list.extend(check(a_pair)) if length of a_pair[0]>n: return "Undecidable" return "Have no relation"
Q = random() check_list = [(f,g)] while check_list != []: a_pair = check_list.pop(0) check_list.extend(check(a_pair)) if length of a_pair[0]>n: return "Undecidable" return "Have no relation"
Q = random() check_list = [(f,g)] while check_list != []: a_pair = check_list.pop(0) check_list.extend(check(a_pair)) if length of a_pair[0]>n: return "Undecidable" return "Have no relation"
Q = random() check_list = [(f,g)] while check_list != []: a_pair = check_list.pop(0) check_list.extend(check(a_pair)) if length of a_pair[0]>n: return "Undecidable" return "Have no relation"
def check(a_pair): A = a_pair[0] B = a_pair[1] d = f.degree() diff = h(A(Q)/A.degree())-h(B(Q)/B.degree()) C = max(f.resultant(),g.resultant()) err = 2C/((d-1)d^n) if diff/2 > err: return [] else: if A==B: return "find a relation A=B" else: return [(fA,fB),(fA,gB),(gA,fB),(gA,gB)]
def check(a_pair): A = a_pair[0] B = a_pair[1] d = f.degree() diff = h(A(Q)/A.degree())-h(B(Q)/B.degree()) C = max(f.resultant(),g.resultant()) err = 2C/((d-1)d^n) if diff/2 > err: return [] else: if A==B: return "find a relation A=B" else: return [(fA,fB),(fA,gB),(gA,fB),(gA,gB)]
def check(a_pair): A = a_pair[0] B = a_pair[1] d = f.degree() diff = h(A(Q)/A.degree())-h(B(Q)/B.degree()) C = max(f.resultant(),g.resultant()) err = 2C/((d-1)d^n) if diff/2 > err: return [] else: if A==B: return "find a relation A=B" else: return [(fA,fB),(fA,gB),(gA,fB),(gA,gB)]
def check(a_pair): A = a_pair[0] B = a_pair[1] d = f.degree() diff = h(A(Q)/A.degree())-h(B(Q)/B.degree()) C = max(f.resultant(),g.resultant()) err = 2C/((d-1)d^n) if diff/2 > err: return [] else: if A==B: return "find a relation A=B" else: return [(fA,fB),(fA,gB),(gA,fB),(gA,gB)]
def check(a_pair): A = a_pair[0] B = a_pair[1] d = f.degree() diff = h(A(Q)/A.degree())-h(B(Q)/B.degree()) C = max(f.resultant(),g.resultant()) err = 2C/((d-1)d^n) if diff/2 > err: return [] else: if A==B: return "find a relation A=B" else: return [(fA,fB),(fA,gB),(gA,fB),(gA,gB)]
The only remaining case is when we have a semigroup generated by monomials like \langle \zeta_1x^{n_1},\zeta_2x^{n_2},\ldots,\zeta_mx^{n_m}\rangle.
If \zeta is a primitive fifth root of unity, then the semigroup generated by f=x^2 and g=\zeta x^3 has the following nine relations, none of which is generated by the other:
A finitely generated semigroup G=\Sigma^*/\mathcal{R} with the following properties:
If G is a finitely generated semigroup that meets the three specified conditions, then the cardinality of \mathcal{R} is finite and does not depend on our choice of relations. Furthermore, the process of finding relations can be finished in a finite number of steps.
Takeaways: