Logarithmic differentiation

  1. Application in handling functions of the form f(x)g(x) or f1(x)f2(x)fn(x)g1(x)g2(x)gm(x)
  2. Two-Step Process:
    • Step 1: Take the natural logarithm ln of the given equation
    • Step 2: Apply implicit differentiation to find the derivative

Review technique of differentiation

  1. table of derivatives of basic functions
Function Derivative
Constant (c) ddx(c)=0
Power Rule ddx(xn)=nx(n1)
Exponential (e^x) ddx(ex)=ex
Natural Logarithm (ln(x)) ddx(ln(x))=1x
Sine (sin(x)) ddx(sin(x))=cos(x)
Cosine (cos(x)) ddx(cos(x))=sin(x)
Tangent (tan(x)) ddx(tan(x))=sec2(x)
Natural Log (log_b(x)) ddx(logb(x))=1xln(b)
Inverse Sine (arcsin(x)) ddx(arcsin(x))=11x2
Inverse Cosine (arccos(x)) ddx(arccos(x))=11x2
Inverse Tangent (arctan(x)) ddx(arctan(x))=11+x2
Inverse Cotangent (arccot(x)) ddx(cot1(x))=11+x2
Inverse Secant (arcsec(x)) ddx(sec1(x))=1xx21
Inverse Cosecant (arccsc(x)) ddx(csc1(x))=1xx21
  1. differential rules:
    1. Sum/Difference Rule: ddx(f(x)±g(x))=ddx(f(x))±ddx(g(x)).
    2. Product Rule: ddx(f(x)g(x))=f(x)g(x)+f(x)g(x).
    3. Quotient Rule: ddx(f(x)g(x))=f(x)g(x)f(x)g(x)(g(x))2.
    4. Chain Rule: ddx(f(g(x)))=f(g(x))g(x).
  2. implicit differentiation (inverse functions and logarithmetic differentiation):
    1. inverse functions: y=f1(x) implies f(y)=x.
    2. logarithmetic differentiation: y=f(x)g(x) implies ln(y)=g(x)ln(f(x)).

Investigate scenarios where we are given one rate of change and are tasked with determining another rate of change. Understand the concept of relative rates and how to calculate them.