Logarithmic differentiation

  1. Application in handling functions of the form $f(x)^{g(x)}$ or $\frac{f_1(x)f_2(x)\cdots f_n(x)}{g_1(x)g_2(x)\cdots g_m(x)}$
  2. Two-Step Process:
    • Step 1: Take the natural logarithm $\ln$ of the given equation
    • Step 2: Apply implicit differentiation to find the derivative

Review technique of differentiation

  1. table of derivatives of basic functions
Function Derivative
Constant (c) $\frac{d}{dx}(c) = 0$
Power Rule $\frac{d}{dx}(x^n) = nx^{(n-1)}$
Exponential (e^x) $\frac{d}{dx}(e^x) = e^x$
Natural Logarithm (ln(x)) $\frac{d}{dx}(\ln(x)) = \frac{1}{x}$
Sine (sin(x)) $\frac{d}{dx}(\sin(x)) = \cos(x)$
Cosine (cos(x)) $\frac{d}{dx}(\cos(x)) = -\sin(x)$
Tangent (tan(x)) $\frac{d}{dx}(\tan(x)) = \sec^2(x)$
Natural Log (log_b(x)) $\frac{d}{dx}(\log_b(x)) = \frac{1}{x\ln(b)}$
Inverse Sine (arcsin(x)) $\frac{d}{dx}(\arcsin(x)) = \frac{1}{\sqrt{1-x^2}}$
Inverse Cosine (arccos(x)) $\frac{d}{dx}(\arccos(x)) = -\frac{1}{\sqrt{1-x^2}}$
Inverse Tangent (arctan(x)) $\frac{d}{dx}(\arctan(x)) = \frac{1}{1+x^2}$
Inverse Cotangent (arccot(x)) $\frac{d}{dx}(\cot^{-1}(x)) = -\frac{1}{1+x^2}$
Inverse Secant (arcsec(x)) $\frac{d}{dx}(\sec^{-1}(x)) = \frac{1}{x\sqrt{x^2-1}}$
Inverse Cosecant (arccsc(x)) $\frac{d}{dx}(\csc^{-1}(x)) = -\frac{1}{x\sqrt{x^2-1}}$
  1. differential rules:
    1. Sum/Difference Rule: $\frac{d}{dx}(f(x) \pm g(x)) = \frac{d}{dx}(f(x)) \pm \frac{d}{dx}(g(x))$.
    2. Product Rule: $\frac{d}{dx}(f(x) \cdot g(x)) = f’(x) \cdot g(x) + f(x) \cdot g’(x)$.
    3. Quotient Rule: $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f’(x) \cdot g(x) - f(x) \cdot g’(x)}{(g(x))^2}$.
    4. Chain Rule: $\frac{d}{dx}(f(g(x))) = f’(g(x)) \cdot g’(x)$.
  2. implicit differentiation (inverse functions and logarithmetic differentiation):
    1. inverse functions: $y=f^{-1}(x)$ implies $f(y)=x$.
    2. logarithmetic differentiation: $y=f(x)^{g(x)}$ implies $\ln(y)=g(x)\ln(f(x))$.

Investigate scenarios where we are given one rate of change and are tasked with determining another rate of change. Understand the concept of relative rates and how to calculate them.