graph LR
  A -- def --> B
  C -. use .-> D
  E == question ==> F

我們用實線代表定義或是分類,用虛線表示必要工具,用粗線代表直接關聯到該主題的問題。所以上面分別代表:

  • A 定義了 B,或是 B 是 A 的子 sub topic
  • D 是 C 的必要工具
  • F 是 E 這個主題會考的題目
graph LR
	LISF[Define the line integral of a scalar function];
	LIVF[Define the line integral of a vector field];
	PC[Parametric curve];
	OC[Define orientation of a curve];
	CC[Define closed curve];
	POC[Define postivie orientation of a closed curve];
	subgraph Green's theorem
		direction TB
		Circulation["Circulation form"];
		Flux["Flux form"];
	end
	VF[Define vector fields];
	PF[Potential function];
	FTLI[Fundamental theorem for line integral];
	SISF[Define surface integral of a scalar function];
	SIVF[Define surface integral of a vector field];
	PS[Parametric surface];
	OS[Define orientation of a surface];
	CS[Define closed surface];
	POS[Define positive orientation of a closed surface];
	Curl[Curl];
	Stokes[Stokes' Theorem];
	Div["Div"];
	Divergence[Divergence Theorem];
	VF & LISF & OC --def---> LIVF;
	PC -- def --> OC
	CC & OC -- def --> POC;
	LIVF & POC <-. use .- Circulation & Flux;
	Circulation -. equivalent .- Flux;
	VF & SISF & OS -- def --> SIVF;
	PS -- def --> OS
	CS & OS -- def --> POS;
	SIVF <-. use .- Stokes & Divergence
	POS <-. use .- Divergence
	Circulation -. generalize .-> Stokes
	Flux -. generalize .-> Divergence
	Curl <-. use .- Stokes
	Div <-. use .- Divergence
	VF -- def --> Curl & Div
	VF ==question==> PF
	FTLI <-. use .- PF
	
	
	

考點:

  1. 對 vector field 的線積分與曲面積分,涉及將線或面參數化。
  2. 給一個 vector field,請你找到他的 potential function 然後使用 Fundamental theorem for line integral 去計算 potential function 的積分。
  3. 使用 Green’s theorem (有 pole 跟 no pole)
  4. Stokes’ theorem 的考題有
    1. 曲面積分不好算,將曲面積分換成線積分
    2. 曲面積分不好算,找一個比較好算的曲面,則原本的曲面積分等於比較好算的那個曲面的曲面積分。
  5. Divergence theorem 的考題有
    1. 給出一個圓柱或多面體,其中有幾個曲面的曲面積分比較好計算,體積分也容易計算,用此來算出剩下最後一個曲面的曲面積分
    2. 給一個雙重積分等於三重積分的等式要你證明該等式。
graph LR;
	Sequence[Sequence];
	SeqConvergence[How to determine if a sequence is convergent];
	series[Series];
	subgraph Test of Convergence	
		SpecialSeries[Special series];
		Comparison[Test that use integrals or series to compare];
		RatioRoot[The ratio test and the root test];
	end
	PowerSeries[Power series];
	Radius[Radius of Convergence];
	TaylorSeries[Taylor series and Maclaurin series];
	TaylorBasic[Taylor series of basic functions];
	TaylorMore[More Taylor series via operations of functions];
	Application[Application of Taylor series];
	Sequence == question ==> SeqConvergence
	Sequence -- def convergence --> series
	series -. use .-> SpecialSeries & Comparison & RatioRoot
	series -- def --> PowerSeries
	PowerSeries == question ==> Radius
	Radius -.use.-> RatioRoot
	PowerSeries -. equivalent .- TaylorSeries
	TaylorSeries == question ==> Radius
	TaylorSeries --compute--> TaylorBasic
	TaylorBasic --compute--> TaylorMore
	TaylorSeries ==question==> Application

考點:

  1. 數列是否收斂。
  2. 級數是否收斂
    1. 我們透過數列收斂來定義級數收斂。
    2. 注意! 只有當級數是 Geometric series,Telescoping series,或是由某個泰勒展示得到的級數 有辦法計算級數收斂的值。
  3. Power series 的收斂半徑,以及檢查收斂區間的 boundary point 是否也是收斂的,以此判斷是 conditional convergence 或 absolute convergence。
  4. The term ‘power series’ is often used interchangeably with ‘Taylor expansion’. However, there are subtle differences between the two. We typically refer to a power series as a ‘Taylor series’ when we represent a function in a closed form using a power series. It’s important to note that not all power series can be represented in a closed form.
  5. 算出某個函數的泰勒展開式,例如 $\int_0^{x^3}\tan(t)dt$ 或 $\sqrt{x^2+4x}$ 在 $x=-2$的泰勒展開式。
  6. 泰勒展開式的收斂半徑。
  7. 利用泰勒展開式的係數反推函數的n次導數的值。
  8. 利用泰勒展開式去做估計,以及對該估計給出一個合理的誤差。
  9. 利用泰勒展開式去計算極限 (L’Hopital rule)。 undefined