graph LR
A -- def --> B
C -. use .-> D
E == question ==> F
我們用實線代表定義或是分類,用虛線表示必要工具,用粗線代表直接關聯到該主題的問題。所以上面分別代表:
- A 定義了 B,或是 B 是 A 的子 sub topic
- D 是 C 的必要工具
- F 是 E 這個主題會考的題目
graph LR
LISF[Define the line integral of a scalar function];
LIVF[Define the line integral of a vector field];
PC[Parametric curve];
OC[Define orientation of a curve];
CC[Define closed curve];
POC[Define postivie orientation of a closed curve];
subgraph Green's theorem
direction TB
Circulation["Circulation form"];
Flux["Flux form"];
end
VF[Define vector fields];
PF[Potential function];
FTLI[Fundamental theorem for line integral];
SISF[Define surface integral of a scalar function];
SIVF[Define surface integral of a vector field];
PS[Parametric surface];
OS[Define orientation of a surface];
CS[Define closed surface];
POS[Define positive orientation of a closed surface];
Curl[Curl];
Stokes[Stokes' Theorem];
Div["Div"];
Divergence[Divergence Theorem];
VF & LISF & OC --def---> LIVF;
PC -- def --> OC
CC & OC -- def --> POC;
LIVF & POC <-. use .- Circulation & Flux;
Circulation -. equivalent .- Flux;
VF & SISF & OS -- def --> SIVF;
PS -- def --> OS
CS & OS -- def --> POS;
SIVF <-. use .- Stokes & Divergence
POS <-. use .- Divergence
Circulation -. generalize .-> Stokes
Flux -. generalize .-> Divergence
Curl <-. use .- Stokes
Div <-. use .- Divergence
VF -- def --> Curl & Div
VF ==question==> PF
FTLI <-. use .- PF
考點:
- 對 vector field 的線積分與曲面積分,涉及將線或面參數化。
- 給一個 vector field,請你找到他的 potential function 然後使用 Fundamental theorem for line integral 去計算 potential function 的積分。
- 使用 Green’s theorem (有 pole 跟 no pole)
- Stokes’ theorem 的考題有
- 曲面積分不好算,將曲面積分換成線積分
- 曲面積分不好算,找一個比較好算的曲面,則原本的曲面積分等於比較好算的那個曲面的曲面積分。
- Divergence theorem 的考題有
- 給出一個圓柱或多面體,其中有幾個曲面的曲面積分比較好計算,體積分也容易計算,用此來算出剩下最後一個曲面的曲面積分
- 給一個雙重積分等於三重積分的等式要你證明該等式。
graph LR;
Sequence[Sequence];
SeqConvergence[How to determine if a sequence is convergent];
series[Series];
subgraph Test of Convergence
SpecialSeries[Special series];
Comparison[Test that use integrals or series to compare];
RatioRoot[The ratio test and the root test];
end
PowerSeries[Power series];
Radius[Radius of Convergence];
TaylorSeries[Taylor series and Maclaurin series];
TaylorBasic[Taylor series of basic functions];
TaylorMore[More Taylor series via operations of functions];
Application[Application of Taylor series];
Sequence == question ==> SeqConvergence
Sequence -- def convergence --> series
series -. use .-> SpecialSeries & Comparison & RatioRoot
series -- def --> PowerSeries
PowerSeries == question ==> Radius
Radius -.use.-> RatioRoot
PowerSeries -. equivalent .- TaylorSeries
TaylorSeries == question ==> Radius
TaylorSeries --compute--> TaylorBasic
TaylorBasic --compute--> TaylorMore
TaylorSeries ==question==> Application
考點:
- 數列是否收斂。
- 級數是否收斂
- 我們透過數列收斂來定義級數收斂。
- 注意! 只有當級數是 Geometric series,Telescoping series,或是由某個泰勒展示得到的級數 有辦法計算級數收斂的值。
- Power series 的收斂半徑,以及檢查收斂區間的 boundary point 是否也是收斂的,以此判斷是 conditional convergence 或 absolute convergence。
- The term ‘power series’ is often used interchangeably with ‘Taylor expansion’. However, there are subtle differences between the two. We typically refer to a power series as a ‘Taylor series’ when we represent a function in a closed form using a power series. It’s important to note that not all power series can be represented in a closed form.
- 算出某個函數的泰勒展開式,例如 $\int_0^{x^3}\tan(t)dt$ 或 $\sqrt{x^2+4x}$ 在 $x=-2$的泰勒展開式。
- 泰勒展開式的收斂半徑。
- 利用泰勒展開式的係數反推函數的n次導數的值。
- 利用泰勒展開式去做估計,以及對該估計給出一個合理的誤差。
- 利用泰勒展開式去計算極限 (L’Hopital rule)。 undefined