Wayne Peng's
  • About Me
  • Resources
    News about ABC conjecture Beautiful Jekyll Learn markdown Build yourown blog Calculus Connection Database
  • Slides
  • Publication
  • Search
Navigation bar avatar
✕

    Definition of Continuity

    • 1. Definition of Limits
    • 1-1. How to Evaluate Limits
    • 1-2. Asymptotes
    • 2. Definition of Continuity
    • 2-1. Theorems Assuming Continuity
    • 3. Definition of Derivatives
    • 3-1. How to Find Derivatives
    • 3-2. Theorems Assuming Differentiability
    • 3-3. Applications of Differentiation
    • 4. Definite and Indefinite Integrals
    • 4-1. The Fundamental Theorem of Calculus
    • 5. Techniques of Integration
    • 6. Applications of Integration
    • 6-1. Geometric Applications of Integration
    • 6-2. Probability
    • 7. Improper Integrals
    • 8. Ordinary Differential Equations
    • 8-1. How to Solve Order 1 ODEs
    • 8-2. Applications of ODEs
    書目錄
    • 1. Definition of Limits
    • 1-1. How to Evaluate Limits
    • 1-2. Asymptotes
    • 2. Definition of Continuity
    • 2-1. Theorems Assuming Continuity
    • 3. Definition of Derivatives
    • 3-1. How to Find Derivatives
    • 3-2. Theorems Assuming Differentiability
    • 3-3. Applications of Differentiation
    • 4. Definite and Indefinite Integrals
    • 4-1. The Fundamental Theorem of Calculus
    • 5. Techniques of Integration
    • 6. Applications of Integration
    • 6-1. Geometric Applications of Integration
    • 6-2. Probability
    • 7. Improper Integrals
    • 8. Ordinary Differential Equations
    • 8-1. How to Solve Order 1 ODEs
    • 8-2. Applications of ODEs

    We say a function $f(x)$ is continuous at $x=a$ if $f$ satisfies

    \[\lim_{x\to a^+}f(x)=\lim_{x\to a^-}=f(a).\]

    In terms of $\varepsilon-\delta$, for any $\varepsilon>0$, there exists a $\delta>0$ such that we have

    \[|f(x)-f(a)|<\varepsilon\]
    whenever $ x-a <\delta$.
    On this page
    • RSS
    • Email me
    • Schedule a meeting with me
    • GitHub
    • Instagram
    • ORCID
    • Google Scholar
    • Line

    Junwen Wayne Peng  •  2025  •  junwenwaynepeng.github.io

    Powered by Beautiful Jekyll