Wayne Peng's
  • About Me
  • Resources
    News about ABC conjecture Beautiful Jekyll Learn markdown Build yourown blog Calculus Connection Database
  • Slides
  • Publication
  • Search
Navigation bar avatar
✕
    • Algorithm to determine composition relation

      Posted on April 17, 2023 · 1 minute read

      P. = ProjectiveSpace(ZZ,1) f = DynamicalSystem_projective([ x^3 + 2*x^2*y + 3*y^3, x^2*y + x*y^2 ]) [Read More]
      Tags:
      • research
      • academic
      • algorithm
    • Calculus 3 Practice Exam

      Posted on April 10, 2023 · 1 minute read

      [Read More]
      Tags:
      • calculus
      • calculus 3
      • practice exam
    • 新功能

      Ask me question through line

      Posted on April 07, 2023 · 1 minute read

      最下面有一個 Line 圖示。你可以從那邊問我問題。
      Tags:
      • new
      • function
    • Calculus 3-9 Overview

      Posted on April 07, 2023 · 1 minute read

      Integration Using Polar coordinates [Read More]
      Tags:
      • calculus
      • calculus 3
      • overview
    • Calculus 3-8 Overview

      Switching the order of integration and polar coordinate

      Posted on March 30, 2023 · 1 minute read

      In the 8th class, we went over a few examples to practice the technique of definite and indefinite integrating a function. The order of integration won’t change the value of an integral. However, we discussed how the order of integration can sometimes be important, and that it is essential to... [Read More]
      Tags:
      • calculus
      • calculus 3
      • overview
    • Calculus 3 Worksheet 3

      Double Integral, Fubini Theorem

      Posted on March 27, 2023 · 1 minute read

      Compute the following double integral $\int\int_{\Omega}\frac{1}{1+x+y}dxdy$, $\Omega: [0,1]\times[0,2]$. (Hint: it requires integration by part for $\int\ln(x)dx$.) $\int\int_{\Omega}\frac{xy}{(x^2+y^2)^2}dxdy$, $\Omega:[1,2]\times[1,3]$. (Hint: we are going to apply integration by part twice.) Explain $\int\int_{\Omega}1dxdy$ is the area of $\Omega$. Examine the region $\Omega$ bounded by the lines $x=4$, $y=\frac{1}{2}x+2$, and $y=-x$, as depicted in... [Read More]
      Tags:
      • calculus
      • calculus 3
      • worksheet
    • test

      test

      Posted on March 24, 2023 · 1 minute read

      [Read More]
      Tags:
      • test
    • Calculus 3-7 Overview

      Lagrange Multipliers, Application of Integral, Double Integration

      Posted on March 23, 2023 · 1 minute read

      Method of Lagrange Multipliers In our seventh class, we began by reviewing Lagrange multipliers and discussing finding extreme values on a surface with an open relation. [Read More]
      Tags:
      • calculus
      • calculus 3
      • overview
    • «
    • 1
    • …
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • »
    • RSS
    • Email me
    • Schedule a meeting with me
    • GitHub
    • Instagram
    • ORCID
    • Google Scholar
    • Line

    Junwen Wayne Peng  •  2025  •  junwenwaynepeng.github.io

    Powered by Beautiful Jekyll